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Abstract
The case of two oppositely charged planar surfaces interacting across a salt
solution is reconsidered to explain why the release of counterions from the
slit between the plates can lead to an attractive contribution to the effective
interaction between the plates. We estimate the order of magnitude of the
effective inter-plate potential by first considering a Gouy–Chapman layer
in front of a single charged plate. The Gouy–Chapman problem is fully
characterized by just one parameter, the dimensionless surface charge parameter
s. Considering the number of ions in the double layer as a function of s, we can
identify two regimes: one in which the electro-neutrality of the double layer is
ensured through the exchange of co- and counterions, and another, at large s,
where counterions are to be recruited from the reservoir for the system to remain
electro-neutral. The counterion-release force plays a major role only for plates
with surface parameters that belong to the second regime. Having at hand the
results from the single-plate case we are then able to give a simple interpretation
of the counterion-release interaction. The counterion-release force is dominant
for systems with large s and at large distances. At small distances, when all extra
ions have left the slit between the plates, the release mechanism ceases to work
and the two plates attract each other due to an trivial electrostatic attraction.

1. Introduction

Whenever two oppositely charged objects in solution approach each other, their effective
interaction will have a contribution resulting from the release of ions. Since the double layers
associated with the objects are also oppositely charged, the two double layers will start to
dissolve each other when their distance becomes small enough for them to overlap. Then,
fixed charges on the objects begin to partially neutralize each other. Accordingly, mobile
ions of the double layers are no longer needed to screen the fixed charges. They can leave
the system and return to the bulk ion reservoir. This release of ions can lead to a substantial
reduction of the grand potential energy of the system. This energy contribution is known as
‘counterion-release interaction’.
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The notion of a counterion-release energy appeared in the literature for the first time in
1976 when deHaseth, Lohman and Record used it to explain the salt dependence of the binding
constant K of a protein–DNA binding reaction [1, 2]. Since then, and especially in recent years,
the counterion-release interaction has received much attention. It has been discussed in the
context of biological macroion association in solution (e.g. binding of proteins to DNA [3–6]),
as an important driving force in assembly of polyelectrolyte–surfactant complexes [7] and,
more specifically, in cationic lipid–DNA complexes [8–20] (for a more general introduction
see [21]) and in the theory of polyelectrolyte adsorption [22–27]. More examples include the
interaction of two oppositely charged colloids [28] or membranes [29], and of polyelectrolyte
stars [30], the problem of protein binding to polyelectrolyte brushes [31–34], but also curvature
effects of charged lipid bilayers induced by the counterion release [35]. Recently a paper
appeared where, for the first time, the counterion release seems to have been observed
directly [36].

In two previous papers [23, 20], we examined how the release of counterions affects the
adsorption behaviour of DNA molecules on oppositely charged membranes and studied the
different terms contributing to the total grand potential energy as a function of the DNA–
membrane distance. The present work now uses a very simple model system (in fact, the
simplest possible) to give a detailed explanation for the deeper reason of the counterion-
release force. We focus on the case of two oppositely charged planes which interact across a
salt solution. This is an old problem [37] which has been treated in some length, for instance,
in [38], but it has never served as a test case to explore the counterion-release force. We start
by first outlining the problem we here wish to address.

2. Description of the problem

Consider two parallel, infinitely extended and oppositely charged plates which interact across
a salt solution. The salt solution in between the two plates is assumed to be coupled to a
reservoir of a 1:1 electrolyte in which the concentration of the positive and negative microions
is fixed to the value cs. The solvent is characterized by the Bjerrum length λB = βe2/ε, where
e is the elementary charge, ε the dielectric constant of the solvent and β = 1/kT the inverse
thermal energy. The inverse Debye length κ , characterizing the salt solution, is then given by

κ2 = 8πλBcs. (1)

As for the two plates, it suffices to know the surface charge density σ (given in units of e).
For simplicity, we here consider a pair of exactly oppositely charged plates, that is, one plate
carries the surface charge density σ1 = σ and the other the surface charge density σ2 = −σ
(‘antisymmetric’ pair). The more general case of two plates with a charge mismatch has been
treated by Lau and Pincus [39]. σ is assumed to be a positive quantity, σ > 0, and is equal to
Z/A where Z is the total number of fixed charges on the plate and A the area.

What we seek to calculate here is the total interaction energy V between the plates per
fixed charge Z , or, alternatively, per area A, as a function of the distance L between the plates.
We will show that the interaction is not entirely given by the trivial electrostatic attraction
between oppositely charged plates, but also by an entropic contribution related to the release
of counterions from the slit between both plates. The interaction is attractive for all distances
L (this is not the case if σ1 �= −σ2 [40, 29]). The exact form of V (L) will be analysed later;
we first focus on the total energy difference �V between two plates at contact, V (0), and at
infinite distance from each other, V (∞). We take the energy at L = 0 as the reference point
of our calculation (V (0) = 0). In reality, the situation at L = 0 is rather complicated from the
physical point of view, and our model is certainly not fit to adequately describe this situation.
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But it is not this limit that we are interested in. Concentrating on the effect the ions have on
the interaction between the plates, the situation at L = 0 is for us characterized just by the fact
that there are no microions left in the slit between the plates. At L → ∞, on the other hand,
the plates do not interact as their charges are perfectly screened by a layer of electrolyte ions.
The diffusive ion layer close to the negative surface is positively charged, with a net charge
that exactly cancels the net charge of the fixed plate charges, and vice versa for the positive
surface. Except for the polarity, the planar double layers are identical for both plates; identical
also is the total free energy (more precisely, ‘grand-potential energy’) stored in each double
layer. This energy for a single plate is denoted by�SP; it is always positive. It is clear then that
�V/Z = V (∞)/Z is given just by 2�SP/Z . In order to evaluate �SP, we have to study the
well-known Gouy–Chapman problem of just one charged plate in contact with an electrolyte
solution. From that we obtain�V and can then return to the interaction of two plates.

Hence: allowing two oppositely charged plates to come together from infinite separation
to contact, one gains back twice the energy stored in a Gouy–Chapman double layer. In other
words, to understand the deeper physical reason for the attraction between two oppositely
charged surfaces in a salt solution, the best way to proceed is to analyse in what form the
energy is stored in the Gouy–Chapman double layer of a single isolated plate.

3. The Gouy–Chapman self-energy of a single plate

We here recall the basic ideas of the Gouy–Chapman theory, a good account of which can
be found in [41]. Of central interest in the following is the electrostatic mean-field potential
ψ which we here write in its dimensionless form by multiplying it by eβ. φ(x) = eβψ(x)
depends on the distance x (x > 0) from the plate, assumed to be located here at x = 0. The
densities of the positive (n+(x)) and negative microions (n−(x)) differ from their bulk value
cs near the plates. Adopting the mean-field Poisson–Boltzmann approach one finds

n±(x) = cse
∓φ(x) (2)

so that the ion net charge density is e(n+ − n−) = −2ecs sinh φ and the ion particle density
reads n+ + n− = 2cs cosh φ. Combining equation (2) with Poisson’s equation leads to the
Poisson–Boltzmann equation

φ′′(x) = κ2 sinh φ(x) (3)

with κ2 from equation (1). The electric field at the surface of the plate is known, −φ′(0) =
4πλBσ . Also known is the field at x → ∞ which must be zero in an electro-neutral system;
therefore, φ′(∞) = 0. In addition we set φ(∞) = 0. We rescale all lengths of the problem by
1/κ according to y = κx and arrive at the following Gouy–Chapman boundary value problem:

φ′′(y) = sinh φ(y), φ′(0) = −2s, φ′(∞) = 0 . (4)

The PB equation depends now only on the dimensionless parameter

s := 2πλBσ

κ
, (5)

which we denote in the following as the ‘surface parameter’. The boundary value problem has
the solution [41]

tanh(φ(y)/4) = e−y tanh(φ(0)/4), sinh(φ(0)/2) = s. (6)

With that expression for φ one can now evaluate equation (2) to obtain the ion profiles.
Let us next write down the thermodynamic potential. We consider a (T, V , µs), i.e. a

grand-canonical, ensemble with V the volume, T the temperature andµs the chemical potential
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of the salt ions, fixed here through the salt concentration (βµs = log�3cs with � the thermal
wavelength). The thermodynamic potential of this ensemble is the grand-canonical potential

�(T, V , µs) = U − T S − µs N (7)

with the internal energy U , the entropy S and the total number of microions N . All quantities,
U , S,� and N , are understood to be related to a reference state taken here to be the electrolyte
system with an uncharged plate (s → 0). So N , for example, should be better called the
‘excess’ number of ions, as it is the number of ions in the system when the plate is charged
minus the ion number when it is uncharged. It is obtained from integrating the ion particle
density

N = A
∫ ∞

0
dx (n+ + n− − 2cs) (8)

with n±(x) from equation (2). It is found, using equations (4) and (6), to be

N = 4N0(
√

s2 + 1 − 1) (9)

with

N0 = Acs

κ
= Z

4s
(10)

where the last step in equation (10) results from combining equations (1) and (5). N0 is the
number of anions or cations in the volume Aκ−1 of the bulk salt solution; this volume is roughly
the volume of the ionic layer close to the charged surface. Then the excess number of ions in
the double layer per fixed charge on the plate reads

N(s)/Z =
√

s2 + 1 − 1

s
. (11)

Similarly, we find the excess number of anions N−(s) and cations N+(s)

N±(s)/Z = A

Z

∫ ∞

0
dx (n± − cs) =

√
s2 + 1 − 1 ∓ s

2s
(12)

which can by means of equation (11) be rewritten as

N±(s)/Z = 1
2 N(s)/Z ∓ 1

2 . (13)

The internal energy is the sum of the electrostatic energy and the ideal gas contribution

βU = A

8πλB

∫ ∞

0
dx φ′(x)2 +

3

2
N (14)

with N from equation (8). Evaluating this expression with the Gouy–Chapman solution leads
to

βU(s)/Z = 5

2

N(s)

Z
(15)

with N(s)/Z from equation (11), implying that the first term in equation (14), the total
electrostatic energy, is just

βUelec(s)/Z = N(s)

Z
, (16)

that is two-thirds of the second term. The corresponding expression for the entropy can be
obtained starting from the entropy expression of an inhomogeneous ideal gas

βT S = −A
∫ ∞

0
dx

{
n+(log(n+�

3)− 5
2 ) + n−(log(n−�3)− 5

2 )− 2cs(log(cs�
3)− 5

2 )
}

(17)
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with n±(x) from equation (2). Again, as in equations (8) and (14), we subtracted the value of
the reference system with an uncharged plate. Using equations (4) and (6), it is straightforward
to show that

βT S(s)/Z = N(s)

Z

(
9

2
− βµs

)
− 2 asinh(s) (18)

with βµs = log�3cs. Just a part of this entropy is relevant for the grand potential. This part
we denote by Sp; it is

βT Sp(s)/Z = (βT S(s) + βµs N(s))/Z = 9
2 N(s)/Z − 2 asinh(s). (19)

Since � = U − T Sp (equation (7)), one subtracts equation (19) from (14) to finally find

β�(s)/Z = 2 asinh(s)− 2

√
s2 + 1 − 1

s
. (20)

The same treatment, but carried out in the canonical ensemble, can be found in [41].
Equations (14) and (17) best characterize the Poisson–Boltzmann approach: it treats a salt
solution under the influence of external charges as an inhomogeneous ideal gas of point
charges interacting in a typical mean-field fashion. Note also that while the original problem
depends on four parameters (T , cs, σ , ε), the quantities �, U , Sp and N—when calculated
per fixed charge—all depend on just one parameter, the surface parameter s. The entropy in
equation (18), on the other hand, depends additionally on the chemical potential of the salt
ions.

4. Analysis of the Gouy–Chapman self-energy

We have now all formulae at hand to understand the origin of the grand-potential energy it takes
to build up a Gouy–Chapman double layer. Figure 1 shows N+(s)/Z , N−(s)/Z and N(s)/Z
from equations (12) and (11). All three curves are step-like functions, going from +0.5 to 1
(N−/Z , counterions), from −0.5 to 0 (N+/Z , co-ions) and accordingly from zero to one in
the case of N(s)/Z . The asymptotic behaviour of N(s)/Z follows from equation (11) and is
for s � 1 given by N(s)/Z = s/2+O(s3), while for s � 1 we find N(s)/Z = 1−s−1+O(s−2).
Accordingly, equation (12) yields N±(s)/Z = ∓1/2 + s/4 + O(s2) in the case s � 1 and
N±(s)/Z = (1 ∓ 1 − s−1)/2 + O(s−2) for s � 1. We interpret this asymptotic behaviour
as follows. Because N±(s)/Z ≈ 1/2 and N(s)/Z ≈ 0 for s → 0 every charge on the
surface is neutralized by transferring 0.5 co-ions from the double layer into the reservoir, and
replacing it by 0.5 counterions taken from the reservoir, while the total number of micro-ions
in the double layer is not affected by this replacement. Due to this we call the s � 1 regime
with N(s)/Z ≈ 0 the ‘replacement’ regime. This replacement mechanism to neutralize a
plate charge comes to a natural end when all co-ions in the double layer are replaced. Then
N+/Z ≈ 0 which is the case if s → ∞. Now, for s � 1, the plate charge is neutralized by
taking one full counterion per fixed charge from the reservoir. Accordingly, the total number
of ions in the double layer increases and N(s)/Z ≈ 1. We therefore name this regime the
‘recruitment’ regime.

In figure 2, the entropy expressions in equations (18) (dashed curve) and (19) (solid
curve) are plotted. The asymptotic expansion of the entropy follows from equation (18)
and reads for s → 0: S(s)/Z = (1 − βµs)s/4 + O(s3); in the case s → ∞ we find
S(s)/Z = −2 ln(2s) + 9/2 − βµs + O(s−1). One observes in figure 2 an increase of S(s)/Z
for s < 10 which results from the N(s) dependence of the first term in equation (18). Since
N(s)/Z → 1 for large s, this first term becomes constant and the second term in equation (18)
becomes dominant, which goes like −2 ln(2s) for large s, thus appearing as a straight line on
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counter-ions
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1

Figure 1. Number of co- and counterions (dashed and dashed–dotted curve) and the sum of both
(solid curve) per fixed charge on the plate as a function of the dimensionless surface charge density
s defined in equation (5).

0.01 1 100s

-10

-5

0

5

βT
S 

/ Z

T Sp / Z

T S / Z

Figure 2. The entropy per fixed charge on the plate (dashed curve) as a function of the surface
parameter s for βµs = −5. The solid curve is the µs-independent part of the entropy (defined as
Sp in equation (19)).

a logarithmic scale. As a result of these two competing terms, the entropy has a maximum at
intermediate s. The height of the maximum depends on the value of µs (which is usually a
negative quantity). The entropy is an extensive variable that trivially increases if the number
of particles is increased. In going from S to Sp of equation (19) we extract the µs-independent
part of the entropy that is thus independent of the properties of the reservoir (in a canonical
description Sp is the entropy). Sp has the same asymptotic behaviour as S(s)/Z but without the
terms ∼βµs and is dominated almost entirely by the term −2 asinh(s). Figure 2 (solid curve)
shows that the maximum has almost vanished and that Sp is small for s < 1 and becomes
negative for s > 1. It is not a coincidence that these two regimes match the replacement
and recruitment regimes identified in figure 1: as the entropy is insensitive to the sign of the
charge, a simple replacement of a co-ion by a counterion can not affect the entropy. In other
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Figure 3. Grand-potential energy� = U −T Sp of a Gouy–Chapman double layer per fixed charge
as a function of the surface parameter s, and its two components, the internal energy U and the
entropic contribution −T Sp = −(T S + µs N).

words, the s range where Sp is almost zero just identifies the replacement regime in which the
electro-neutrality of the double layer is ensured through the exchange of co- and counterions.
On the other hand, in the recruitment regime at large s, counterions must be inserted into the
double layer, the total number of ions per volume increases and, accordingly, the volume per
ion shrinks. This of course has an effect on the entropy. Indeed, for s → ∞, both βT S(s) and
βT Sp(s) behave like −Z ln(2s), and since 2s = Z/(2Aκ−1cs) (equation (10)) and Z → N−
for s → ∞, we find −βT Sp(s) ∼ N− log(n/cs) with n = N−/(2Aκ−1). n is the mean
particle density in the double layer and N− log(n/cs) is the difference of an ideal gas entropy
at a density n and a density cs. This supports our interpretation that at large s the entropy is
negative just because of the shrinking volume per ion.

The negative of T Sp/Z is plotted as dashed curve in figure 3. Adding the internal
energy, equation (15) (dashed–dotted curve in figure 3), one obtains the grand-potential energy,
equation (20), plotted in figure 3 as a solid curve. It is clear from equation (15) that the U/Z
saturates at 5/2; see figure 3. Therefore, at large s,� is dominated by the entropic term Sp, and
here, in particular, by the term asinh(s). For s � 1, β�/Z ≈ 2N/Z of which 5

2 N/Z comes
from the internal energy ( 3

2 N/Z ideal gas, N/Z electrostatics) and − 1
2 N/Z from −βT Sp/Z .

This means that, in the replacement regime, the grand potential is almost entirely given by the
internal energy, because, as we have seen, the entropic contribution Sp, being not affected by
an ion replacement, is very small. At s � 1, counterions are to be recruited from the reservoir,
the mean ion density in the double layer increases, Sp decreases and the grand-potential energy
becomes dominated by entropy (at s = 10 the term −T Sp contributes 50% of �, at s = 100
already about 75%).

5. The physical origin of the counterion-release force

If one indeed replaced the correct curve of N(s)/Z in figure 1 by a step function (N/Z = 0 for
s < 1, and N/Z = 1 for s � 1) and applied this to the grand-potential energy, one would find
that β� is zero if s < 1, and 2Z(ln(2s)− 1) if s � 1. The latter energy is purely entropic and
results from the fact that with increasing s the volume per ion in the double layer shrinks. Hav-
ing this in mind, one can now understand the physical reason for the counterion-release force.
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The grand-potential energy in equation (20) is half of the total energy one gains when
de-charging two oppositely charged plates by transferring them from L = ∞ to 0. For two
plates with s < 1, this energy gain is relatively small; it comes mainly from the internal
energy; entropy plays hardly any role. If s > 1, the energy is large, electrostatics and the
internal energy are less significant, and entropy (more precisely, theµs-independent part of the
entropy) dominates the energy. On de-charging the plates, ions are released from the double
layer, the volume per ion of the released ions increases and the system thus gains entropy Sp.
As there are many micro-ions, this is an enormous energy (� ∼ Z !). From this it becomes
clear that the name ‘counterion-release’ force is in principle justified only for systems with a
large value of s (either highly charged or having a low ionic strength) because only then (in the
‘recruitment’ regime) does the release of ions have an energetic effect. One also recognizes
that the electrostatic attraction—which one would naively think to be dominant—is in fact
rather small when compared to the entropic attraction induced by the released ions. Even in
the replacement regime where the counterion release effect is not effective, the electrostatics
just contributes 50% of the attraction. In the replacement regime where N(s)/Z ≈ 1 the
electrostatics is just 1 kT per fixed charge on the plate (see equation (16)). This has to be
compared to the values of β�/Z in figure 3!

Let us consider for a moment the Debye–Hückel limiting case in which |φ(x)| < 1 so that
the right-hand side of equation (4) can be expanded up to linear order. The solution to (4) is
φ(x) = 2se−κx , the densities read n±(x) = cs(1 ∓ 2se−κx) and we find for N+/Z and N−/Z ,
defined in equation (12), just ∓ 1

2 . Thus, N/Z = 0. In words: in the Debye–Hückel limit, one
is confined to the replacement regime; the total number of ions in the double layer is always
the same. Entropy thus should not play a role. Indeed, inserting equations (8), (14) and (17)
in equation (7) and using equation (2) and log(cs�

3) = βµs, one finds after an integration by
parts

β� = Z

2
φ(0) + Acs

∫ ∞

0
dx

(
φ(x) sinh φ(x)− 2(cosh φ(x)− 1)

)
(21)

which reduces to

β� = Z

2
φ(0) (22)

if |φ(x)| < 1 everywhere. This is just the electrostatic energy of the fixed charges in the mean-
field potential. These remarks show that neither an ion release nor an attraction connected
with this release can be understood in terms of a linear theory; the attraction resulting from the
release of ions is a phenomenon arising solely from the non-linearity of the Poisson–Boltzmann
equation.

6. Counterion-release attraction

For the single-plate problem we have derived �SP, and have thus a value for the order of
magnitude of the counterion-release attraction, �V/Z = V (∞)/Z = 2�SP/Z . To calculate
the full interaction potential V (κL) between the antisymmetric pair of plates at distance κL,
one has to solve numerically the problem

φ′′(y) = sinh φ(y), φ′(0) = −2s, φ′(κL) = −2s (23)

and use this in the equations (8), (14) and (17) to obtain the quantities N , U and S, and from
them the quantities� and Sp as defined in the previous section. In (8), (14) and (17) one has to
integrate from zero to κL. All functions are now κL-dependent. Of course, for κL → ∞, all
functions have values that are just twice the value calculated in the one-plate problem of the
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Figure 4. (a) Total number of microions per fixed charge between two oppositely charged plates as
a function of the plate distance κL , for three values of the surface parameter s. (b) The interaction
potential V (κL) between two oppositely charged plates, obtained from the numerical solution of
equation (23). Dashed curves for s = 1; thin solid curves for s = 10; thick solid curves for
s = 100. Also given are predictions for V (κL) as obtained from a simple approximative formula,
equation (24).

previous section. Figure 4(a) shows N(κL) per fixed charge as a function of the distance for
three different values of the surface parameter. For each s, the value at κL = 5 is the same as
one can find in figure 1 for this s, implying that at this distance the κL → ∞ limit is already
reached. The figure demonstrates how on reducing κL, ions are released from the slit between
the plates. Figure 4(b) show the interaction potential V (κL) = �(κL), evaluated using the
solution of equation (23). Since at small distances N(κL) becomes invariably zero, one is
allowed in this region to ignore the micro-ions and may assume the electric field to have the
constant value 2κs (capacitor in dielectric medium). One finds βV (κL)/Z = sκL. A rough
approximation for V (κL) then is

βV (κL)/Z =
{
κsL κL < βV (∞)/s

βV (∞) κL > βV (∞)/s
(24)

with

βV (∞)/Z = 4 asinh(s)− 4

√
s2 + 1 − 1

s
. (25)

V (κL)/Z , approximated by this simple formula, is also plotted in figure 4(b). Figure 5(a)
shows V (κL)/Z for s = 100 and the two parts that it consists of, U(κL) and −T Sp(κL).
−T Sp(κL) has almost the same form as N(κL)/N(∞) in figure 4(a); for small distances
(κL < 0.05) all ions have left the slit, and Sp = 0: entropy then ceases to have an effect on
the effective plate interaction which is now governed exclusively by U(κL).

We define dimensionless forces in the following way:

f�(κL) = − ∂

∂(κL)
β�(κL)/Z

fS(κL) = − ∂

∂(κL)
β(−T Sp(κL))/Z

fU (L) = − ∂

∂(κL)
βU(κL)/Z .

(26)

Of course, f�(κL) = fU (κL) + fS(κL). The three force curves, for s = 1, 10 and 100, are
shown in figures 5(b)–(d). The total force is always attractive with a range from κL ≈ 0.25
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a) b)

c) d)

Figure 5. (a) The internal energy U(κL), the entropic contribution −T Sp(κL), and the sum
of both, the interaction potential V (κL) = �(κL) = U(κL) − T Sp(κL), as a function of the
distance κL (s = 100). (b)–(d) Inter-plate force as a function of the distance for s = 1, 10
and 100. The dimensionless forces f�(κL), fS(κL) and fU (κL) are defined in equation (26).
f�(κL) = fU (κL) + f S(κL).

(s = 100) to κL ≈ 5 (s = 1). For s = 100 and 10, the total force at larger distances is
dominated by the entropic force fS(κL). Interestingly, the force fU (κL), derived from the
internal energy (including, in particular, the electrostatic energy) is repulsive (!) in this distance
regime. This best characterizes the importance of the release forces: two oppositely charged
plates would repel each other, without the attraction produced by the release of counterions.
At shorter distances fS(κL) becomes weaker and fU (κL) at the same time becomes attractive,
until for κL → 0 the total attraction is purely electrostatic in nature. The trivial case of a
purely electrostatic attraction at all distances is shown in figure 5(d) for s = 1. fU (κL) is
always attractive and dominates the interaction while fS(κL) can practically be ignored. This
curve could be calculated within Debye–Hückel theory. Note that there is a factor of 100
between the forces for s = 1 and those for s = 100. Note also that these are the forces per
fixed charge (on one plate). To compute total forces one has to multiply these numbers by Z ,
and since s ∼ Z the difference between the total forces will be even larger. This once more
underlines the importance of the counterion-release force.

7. Conclusion

The purpose of this paper is to explain why the release of ions in the slit between two oppositely
charged plates leads to an attractive force between the plates. To estimate the order of magnitude
of the effective interaction potential we computed the amount of grand-potential energy stored
in a Gouy–Chapman layer in front of a single charged plate. It just depends on the dimensionless
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surface parameter s. Considering the number of ions in the double layer as a function of s,
we could identify two regimes: the ‘replacement’ and the ‘recruitment’ regime. The entropy
Sp is almost zero in the replacement regime in which the electro-neutrality of the double layer
is ensured through the exchange of co- and counterions. At large s, counterions are recruited
from the reservoir, so the volume per ion in the double layer shrinks. This affects the entropy. It
is this energy (of entropic origin) that one gains back if the counterions are released on bringing
two oppositely charged plates together. Ions have less free volume in the double layer than
they have in the reservoir. This fact explains the energy behind the counterion-release force.

The counterion-release force is dominant for systems with large s and at large distances
when it is capable of overcoming a repulsive interaction resulting from the internal energy. At
small distances when all extra ions have left the slit between the plates, it ceases to work. Then
the two plates attract each other due to an electrostatic attraction. The parameter s is of crucial
importance to estimate whether or not a counterion-release force is active in a given system.
As a rule of thumb, it is important only if s is much larger than one. This is a regime where
the non-linearity of the Poisson–Boltzmann equation is essential. Thus the occurrence of a
release force is a phenomenon which is naturally related to non-linear screening. It is known
that for highly charged surfaces the mean-field description of the problem fails. Nevertheless,
we believe that the mechanism of the counterion release described in this paper also remains
valid in the regime where the Poisson–Boltzmann approach is no longer justifiable.
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